mirror of
https://git.in.rschanz.org/ryan77627/guix.git
synced 2025-01-25 03:59:38 -05:00
75 lines
2.4 KiB
Diff
75 lines
2.4 KiB
Diff
|
From: Tobias Geerinckx-Rice <me@tobias.gr>
|
||
|
Date: Mon, 16 Mar 2020 22:51:37 +0000
|
||
|
Subject: gnu: eigen: Stabilise sparseqr test.
|
||
|
|
||
|
Taken verbatim from this[0] upstream commit.
|
||
|
|
||
|
[0]: https://gitlab.com/libeigen/eigen/-/commit/3b5deeb546d4017b24846f5b0dc3296a50a039fe
|
||
|
|
||
|
From 3b5deeb546d4017b24846f5b0dc3296a50a039fe Mon Sep 17 00:00:00 2001
|
||
|
From: Gael Guennebaud <g.gael@free.fr>
|
||
|
Date: Tue, 19 Feb 2019 22:57:51 +0100
|
||
|
Subject: [PATCH] bug #899: make sparseqr unit test more stable by 1) trying
|
||
|
with larger threshold and 2) relax rank computation for rank-deficient
|
||
|
problems.
|
||
|
|
||
|
---
|
||
|
test/sparseqr.cpp | 31 ++++++++++++++++++++++++++-----
|
||
|
1 file changed, 26 insertions(+), 5 deletions(-)
|
||
|
|
||
|
diff --git a/test/sparseqr.cpp b/test/sparseqr.cpp
|
||
|
index 3ffe62314..3576cc626 100644
|
||
|
--- a/test/sparseqr.cpp
|
||
|
+++ b/test/sparseqr.cpp
|
||
|
@@ -43,6 +43,7 @@ int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows
|
||
|
|
||
|
template<typename Scalar> void test_sparseqr_scalar()
|
||
|
{
|
||
|
+ typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
|
||
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
|
||
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||
|
@@ -91,14 +92,34 @@ template<typename Scalar> void test_sparseqr_scalar()
|
||
|
exit(0);
|
||
|
return;
|
||
|
}
|
||
|
-
|
||
|
- VERIFY_IS_APPROX(A * x, b);
|
||
|
-
|
||
|
- //Compare with a dense QR solver
|
||
|
+
|
||
|
+ // Compare with a dense QR solver
|
||
|
ColPivHouseholderQR<DenseMat> dqr(dA);
|
||
|
refX = dqr.solve(b);
|
||
|
|
||
|
- VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
|
||
|
+ bool rank_deficient = A.cols()>A.rows() || dqr.rank()<A.cols();
|
||
|
+ if(rank_deficient)
|
||
|
+ {
|
||
|
+ // rank deficient problem -> we might have to increase the threshold
|
||
|
+ // to get a correct solution.
|
||
|
+ RealScalar th = RealScalar(20)*dA.colwise().norm().maxCoeff()*(A.rows()+A.cols()) * NumTraits<RealScalar>::epsilon();
|
||
|
+ for(Index k=0; (k<16) && !test_isApprox(A*x,b); ++k)
|
||
|
+ {
|
||
|
+ th *= RealScalar(10);
|
||
|
+ solver.setPivotThreshold(th);
|
||
|
+ solver.compute(A);
|
||
|
+ x = solver.solve(b);
|
||
|
+ }
|
||
|
+ }
|
||
|
+
|
||
|
+ VERIFY_IS_APPROX(A * x, b);
|
||
|
+
|
||
|
+ // For rank deficient problem, the estimated rank might
|
||
|
+ // be slightly off, so let's only raise a warning in such cases.
|
||
|
+ if(rank_deficient) ++g_test_level;
|
||
|
+ VERIFY_IS_EQUAL(solver.rank(), dqr.rank());
|
||
|
+ if(rank_deficient) --g_test_level;
|
||
|
+
|
||
|
if(solver.rank()==A.cols()) // full rank
|
||
|
VERIFY_IS_APPROX(x, refX);
|
||
|
// else
|
||
|
--
|
||
|
2.24.1
|
||
|
|