gnu: python-autograd: Update to 1.5.

* gnu/packages/machine-learning.scm (python-autograd): Update to 1.5.
  [build-system]: Use pyproject-build-system.
  [arguments]: Remove custom 'check phase.

Change-Id: Ic76510b94d268d5dba6e9b0e057fcfca125e424f
Signed-off-by: Ludovic Courtès <ludo@gnu.org>
This commit is contained in:
Felix Gruber 2023-11-04 15:07:10 +00:00 committed by Ludovic Courtès
parent 8da64e8810
commit 0399d5b610
No known key found for this signature in database
GPG key ID: 090B11993D9AEBB5

View file

@ -1968,9 +1968,9 @@ (define-public python-cmaes
(license license:expat))) (license license:expat)))
(define-public python-autograd (define-public python-autograd
(let* ((commit "442205dfefe407beffb33550846434baa90c4de7") (let* ((commit "c6d81ce7eede6db801d4e9a92b27ec5d409d0eab")
(revision "0") (revision "0")
(version (git-version "0.0.0" revision commit))) (version (git-version "1.5" revision commit)))
(package (package
(name "python-autograd") (name "python-autograd")
(home-page "https://github.com/HIPS/autograd") (home-page "https://github.com/HIPS/autograd")
@ -1981,19 +1981,14 @@ (define-public python-autograd
(commit commit))) (commit commit)))
(sha256 (sha256
(base32 (base32
"189sv2xb0mwnjawa9z7mrgdglc1miaq93pnck26r28fi1jdwg0z4")) "04kljgydng42xlg044h6nbzxpban1ivd6jzb8ydkngfq88ppipfk"))
(file-name (git-file-name name version)))) (file-name (git-file-name name version))))
(version version) (version version)
(build-system python-build-system) (build-system pyproject-build-system)
(native-inputs (native-inputs
(list python-nose python-pytest)) (list python-nose python-pytest))
(propagated-inputs (propagated-inputs
(list python-future python-numpy)) (list python-future python-numpy))
(arguments
`(#:phases (modify-phases %standard-phases
(replace 'check
(lambda _
(invoke "py.test" "-v"))))))
(synopsis "Efficiently computes derivatives of NumPy code") (synopsis "Efficiently computes derivatives of NumPy code")
(description "Autograd can automatically differentiate native Python and (description "Autograd can automatically differentiate native Python and
NumPy code. It can handle a large subset of Python's features, including loops, NumPy code. It can handle a large subset of Python's features, including loops,