gnu: Add randomjungle.

* gnu/packages/machine-learning.scm (randomjungle): New variable.
This commit is contained in:
Ricardo Wurmus 2015-06-02 15:47:22 +02:00
parent 71f80f5487
commit 0931c6091c

View file

@ -23,7 +23,12 @@ (define-module (gnu packages machine-learning)
#:use-module (guix download) #:use-module (guix download)
#:use-module (guix build-system gnu) #:use-module (guix build-system gnu)
#:use-module (gnu packages) #:use-module (gnu packages)
#:use-module (gnu packages python)) #:use-module (gnu packages boost)
#:use-module (gnu packages compression)
#:use-module (gnu packages gcc)
#:use-module (gnu packages maths)
#:use-module (gnu packages python)
#:use-module (gnu packages xml))
(define-public libsvm (define-public libsvm
(package (package
@ -96,3 +101,46 @@ (define-public python-libsvm
(inputs (inputs
`(("python" ,python))) `(("python" ,python)))
(synopsis "Python bindings of libSVM"))) (synopsis "Python bindings of libSVM")))
(define-public randomjungle
(package
(name "randomjungle")
(version "2.1.0")
(source
(origin
(method url-fetch)
(uri (string-append
"http://www.imbs-luebeck.de/imbs/sites/default/files/u59/"
"randomjungle-" version ".tar_.gz"))
(sha256
(base32
"12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w"))))
(build-system gnu-build-system)
(arguments
`(#:configure-flags
(list (string-append "--with-boost="
(assoc-ref %build-inputs "boost")))
#:phases
(modify-phases %standard-phases
(add-before
'configure 'set-CXXFLAGS
(lambda _
(setenv "CXXFLAGS" "-fpermissive ")
#t)))))
(inputs
`(("boost" ,boost)
("gsl" ,gsl)
("libxml2" ,libxml2)
("zlib" ,zlib)))
(native-inputs
`(("gfortran" ,gfortran-4.8)))
(home-page "http://www.imbs-luebeck.de/imbs/de/node/227/")
(synopsis "Implementation of the Random Forests machine learning method")
(description
"Random Jungle is an implementation of Random Forests. It is supposed to
analyse high dimensional data. In genetics, it can be used for analysing big
Genome Wide Association (GWA) data. Random Forests is a powerful machine
learning method. Most interesting features are variable selection, missing
value imputation, classifier creation, generalization error estimation and
sample proximities between pairs of cases.")
(license license:gpl3+)))