mirror of
https://git.in.rschanz.org/ryan77627/guix.git
synced 2025-01-11 13:49:23 -05:00
gnu: Add python-autograd
* gnu/packages/machine-learning.scm (python-autograd, python2-autograd): New variables. Signed-off-by: Ludovic Courtès <ludo@gnu.org>
This commit is contained in:
parent
3c2d267f4b
commit
2dab4188ec
1 changed files with 44 additions and 0 deletions
|
@ -6,6 +6,7 @@
|
|||
;;; Copyright © 2018 Tobias Geerinckx-Rice <me@tobias.gr>
|
||||
;;; Copyright © 2018 Mark Meyer <mark@ofosos.org>
|
||||
;;; Copyright © 2018 Ben Woodcroft <donttrustben@gmail.com>
|
||||
;;; Copyright © 2018 Fis Trivial <ybbs.daans@hotmail.com>
|
||||
;;;
|
||||
;;; This file is part of GNU Guix.
|
||||
;;;
|
||||
|
@ -688,3 +689,46 @@ (define-public python-scikit-learn
|
|||
|
||||
(define-public python2-scikit-learn
|
||||
(package-with-python2 python-scikit-learn))
|
||||
|
||||
(define-public python-autograd
|
||||
(let* ((commit "442205dfefe407beffb33550846434baa90c4de7")
|
||||
(revision "0")
|
||||
(version (git-version "0.0.0" revision commit)))
|
||||
(package
|
||||
(name "python-autograd")
|
||||
(home-page "https://github.com/HIPS/autograd")
|
||||
(source (origin
|
||||
(method git-fetch)
|
||||
(uri (git-reference
|
||||
(url home-page)
|
||||
(commit commit)))
|
||||
(sha256
|
||||
(base32
|
||||
"189sv2xb0mwnjawa9z7mrgdglc1miaq93pnck26r28fi1jdwg0z4"))
|
||||
(file-name (git-file-name name version))))
|
||||
(version version)
|
||||
(build-system python-build-system)
|
||||
(native-inputs
|
||||
`(("python-nose" ,python-nose)
|
||||
("python-pytest" ,python-pytest)))
|
||||
(propagated-inputs
|
||||
`(("python-future" ,python-future)
|
||||
("python-numpy" ,python-numpy)))
|
||||
(arguments
|
||||
`(#:phases (modify-phases %standard-phases
|
||||
(replace 'check
|
||||
(lambda _
|
||||
(invoke "py.test" "-v"))))))
|
||||
(synopsis "Efficiently computes derivatives of NumPy code")
|
||||
(description "Autograd can automatically differentiate native Python and
|
||||
NumPy code. It can handle a large subset of Python's features, including loops,
|
||||
ifs, recursion and closures, and it can even take derivatives of derivatives
|
||||
of derivatives. It supports reverse-mode differentiation
|
||||
(a.k.a. backpropagation), which means it can efficiently take gradients of
|
||||
scalar-valued functions with respect to array-valued arguments, as well as
|
||||
forward-mode differentiation, and the two can be composed arbitrarily. The
|
||||
main intended application of Autograd is gradient-based optimization.")
|
||||
(license license:expat))))
|
||||
|
||||
(define-public python2-autograd
|
||||
(package-with-python2 python-autograd))
|
||||
|
|
Loading…
Reference in a new issue