gnu: python-umap-learn: Update to 0.5.3.

* gnu/packages/machine-learning.scm (python-umap-learn): Update to 0.5.3.
[source]: Use git.
[arguments]: New field.
[native-inputs]: Delete python-joblib and python-nose.  Add python-pytest.
[propagated-inputs]: Add python-pynndescent and python-tqdm.
[synopsis]: Fix indentation.
[description]: Fix typo and re-indent.
This commit is contained in:
Maxim Cournoyer 2022-04-18 20:09:37 -04:00
parent 06b0512260
commit 34106c85d8
No known key found for this signature in database
GPG key ID: 1260E46482E63562

View file

@ -2796,26 +2796,40 @@ (define-public gloo
(define-public python-umap-learn
(package
(name "python-umap-learn")
(version "0.3.10")
(version "0.5.3")
(source
(origin
(method url-fetch)
(uri (pypi-uri "umap-learn" version))
(method git-fetch) ;no tests in pypi release
(uri (git-reference
(url "https://github.com/lmcinnes/umap")
(commit version)))
(file-name (git-file-name name version))
(sha256
(base32
"02ada2yy6km6zgk2836kg1c97yrcpalvan34p8c57446finnpki1"))))
"1315jkb0h1b579y9m59632f0nnpksilm01nxx46in0rq8zna8vsb"))))
(build-system python-build-system)
(native-inputs
(list python-joblib python-nose))
(arguments
(list
#:phases
#~(modify-phases %standard-phases
(replace 'check
(lambda* (#:key tests? #:allow-other-keys)
(when tests?
(setenv "HOME" "/tmp")
(invoke "pytest" "-vv" "umap")))))))
(native-inputs (list python-pytest))
(propagated-inputs
(list python-numba python-numpy python-scikit-learn python-scipy))
(list python-numba
python-numpy
python-pynndescent
python-scikit-learn
python-scipy
python-tqdm))
(home-page "https://github.com/lmcinnes/umap")
(synopsis
"Uniform Manifold Approximation and Projection")
(description
"Uniform Manifold Approximation and Projection is a dimension reduction
technique that can be used for visualisation similarly to t-SNE, but also for
general non-linear dimension reduction.")
(synopsis "Uniform Manifold Approximation and Projection")
(description "Uniform Manifold Approximation and Projection is a dimension
reduction technique that can be used for visualization similarly to t-SNE, but
also for general non-linear dimension reduction.")
(license license:bsd-3)))
(define-public nnpack