mirror of
https://git.in.rschanz.org/ryan77627/guix.git
synced 2024-11-07 07:26:13 -05:00
gnu: Add r-linnorm.
* gnu/packages/bioconductor.scm (r-linnorm): New variable.
This commit is contained in:
parent
70daf82f28
commit
4291f36a22
1 changed files with 59 additions and 0 deletions
|
@ -2424,3 +2424,62 @@ (define-public r-lumi
|
|||
It also includes the functions of processing Illumina methylation microarrays,
|
||||
especially Illumina Infinium methylation microarrays.")
|
||||
(license license:lgpl2.0+)))
|
||||
|
||||
(define-public r-linnorm
|
||||
(package
|
||||
(name "r-linnorm")
|
||||
(version "2.6.1")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (bioconductor-uri "Linnorm" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1qgk8m5kc409flqxs3vnf228v3z0112q8py9hgfgyiwvi6yzdbp6"))))
|
||||
(properties `((upstream-name . "Linnorm")))
|
||||
(build-system r-build-system)
|
||||
(propagated-inputs
|
||||
`(("r-amap" ,r-amap)
|
||||
("r-apcluster" ,r-apcluster)
|
||||
("r-ellipse" ,r-ellipse)
|
||||
("r-fastcluster" ,r-fastcluster)
|
||||
("r-fpc" ,r-fpc)
|
||||
("r-ggdendro" ,r-ggdendro)
|
||||
("r-ggplot2" ,r-ggplot2)
|
||||
("r-gmodels" ,r-gmodels)
|
||||
("r-igraph" ,r-igraph)
|
||||
("r-limma" ,r-limma)
|
||||
("r-mass" ,r-mass)
|
||||
("r-mclust" ,r-mclust)
|
||||
("r-rcpp" ,r-rcpp)
|
||||
("r-rcpparmadillo" ,r-rcpparmadillo)
|
||||
("r-rtsne" ,r-rtsne)
|
||||
("r-statmod" ,r-statmod)
|
||||
("r-vegan" ,r-vegan)
|
||||
("r-zoo" ,r-zoo)))
|
||||
(home-page "http://www.jjwanglab.org/Linnorm/")
|
||||
(synopsis "Linear model and normality based transformation method")
|
||||
(description
|
||||
"Linnorm is an R package for the analysis of RNA-seq, scRNA-seq, ChIP-seq
|
||||
count data or any large scale count data. It transforms such datasets for
|
||||
parametric tests. In addition to the transformtion function (@code{Linnorm}),
|
||||
the following pipelines are implemented:
|
||||
|
||||
@enumerate
|
||||
@item Library size/batch effect normalization (@code{Linnorm.Norm})
|
||||
@item Cell subpopluation analysis and visualization using t-SNE or PCA K-means
|
||||
clustering or hierarchical clustering (@code{Linnorm.tSNE},
|
||||
@code{Linnorm.PCA}, @code{Linnorm.HClust})
|
||||
@item Differential expression analysis or differential peak detection using
|
||||
limma (@code{Linnorm.limma})
|
||||
@item Highly variable gene discovery and visualization (@code{Linnorm.HVar})
|
||||
@item Gene correlation network analysis and visualization (@code{Linnorm.Cor})
|
||||
@item Stable gene selection for scRNA-seq data; for users without or who do
|
||||
not want to rely on spike-in genes (@code{Linnorm.SGenes})
|
||||
@item Data imputation (@code{Linnorm.DataImput}).
|
||||
@end enumerate
|
||||
|
||||
Linnorm can work with raw count, CPM, RPKM, FPKM and TPM. Additionally, the
|
||||
@code{RnaXSim} function is included for simulating RNA-seq data for the
|
||||
evaluation of DEG analysis methods.")
|
||||
(license license:expat)))
|
||||
|
|
Loading…
Reference in a new issue