gnu: Add lsgkm.

* gnu/packages/bioinformatics.scm (lsgkm): New variable.

Change-Id: I0ea35354c7856e7425567cd4ac27ab7fc2ab0d9e
This commit is contained in:
Ricardo Wurmus 2024-01-23 21:17:53 +01:00
parent 648085dab6
commit 469405375c
No known key found for this signature in database
GPG key ID: 197A5888235FACAC

View file

@ -4728,6 +4728,45 @@ (define-public libbigwig
files.")
(license license:expat)))
(define-public lsgkm
(package
(name "lsgkm")
(version "0.1.1")
(source
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/Dongwon-Lee/lsgkm.git")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"0b3m94kndvimdfjaf1q2yhmsn7lm5s9v81c5xgfjcp6ig7mh3sa5"))))
(build-system gnu-build-system)
(arguments
(list
#:make-flags '(list "-C" "src")
#:tests? #false ;there are no executable tests
#:phases
#~(modify-phases %standard-phases
(delete 'configure)
(replace 'install
(lambda _
(let ((bin (string-append #$output "/bin")))
(for-each (lambda (file)
(install-file file bin))
'("src/gkmtrain"
"src/gkmpredict"))))))))
(home-page "https://github.com/Dongwon-Lee/lsgkm")
(synopsis "Predict regulatory DNA elements in large-scale data")
(description "gkm-SVM, a sequence-based method for predicting regulatory
DNA elements, is a useful tool for studying gene regulatory mechanisms.
LS-GKM is an effort to improve the method. It offers much better scalability
and provides further advanced gapped k-mer based kernel functions. As a
result, LS-GKM achieves considerably higher accuracy than the original
gkm-SVM.")
(license license:gpl3+)))
(define-public python-pybigwig
(package
(name "python-pybigwig")