gnu: Add r-decon.

* gnu/packages/cran.scm (r-decon): New variable.

Signed-off-by: Leo Famulari <leo@famulari.name>
This commit is contained in:
Aniket Patil 2020-12-14 21:57:33 -05:00 committed by Leo Famulari
parent bd740f77ff
commit 795f654b2a
No known key found for this signature in database
GPG key ID: 2646FA30BACA7F08

View file

@ -32,6 +32,7 @@
;;; Copyright © 2020 Arun Isaac <arunisaac@systemreboot.net>
;;; Copyright © 2020 Magali Lemes <magalilemes00@gmail.com>
;;; Copyright © 2020 Simon Tournier <zimon.toutoune@gmail.com>
;;; Copyright © 2020 Aniket Patil <aniket112.patil@gmail.com>
;;;
;;; This file is part of GNU Guix.
;;;
@ -25174,6 +25175,43 @@ (define-public r-calculus
parabolic or user defined by custom scale factors.")
(license license:gpl3)))
(define-public r-decon
(package
(name "r-decon")
(version "1.2-4")
(source
(origin
(method url-fetch)
(uri (cran-uri "decon" version))
(sha256
(base32
"1v4l0xq29rm8mks354g40g9jxn0didzlxg3g7z08m0gvj29zdj7s"))))
(properties `((upstream-name . "decon")))
(build-system r-build-system)
(native-inputs
`(("gfortran" ,gfortran)))
(home-page
"https://cran.r-project.org/web/packages/decon/")
(synopsis "Deconvolution Estimation in Measurement Error Models")
(description
"This package contains a collection of functions to deal with
nonparametric measurement error problems using deconvolution
kernel methods. We focus two measurement error models in the
package: (1) an additive measurement error model, where the
goal is to estimate the density or distribution function from
contaminated data; (2) nonparametric regression model with
errors-in-variables. The R functions allow the measurement errors
to be either homoscedastic or heteroscedastic. To make the
deconvolution estimators computationally more efficient in R,
we adapt the \"Fast Fourier Transform\" (FFT) algorithm for
density estimation with error-free data to the deconvolution
kernel estimation. Several methods for the selection of the
data-driven smoothing parameter are also provided in the package.
See details in: Wang, X.F. and Wang, B. (2011). Deconvolution
estimation in measurement error models: The R package decon.
Journal of Statistical Software, 39(10), 1-24.")
(license license:gpl3+)))
(define-public r-aws-signature
(package
(name "r-aws-signature")