mirror of
https://git.in.rschanz.org/ryan77627/guix.git
synced 2024-11-07 15:36:20 -05:00
gnu: Add r-pcatools.
* gnu/packages/bioconductor.scm (r-pcatools): New variable.
This commit is contained in:
parent
e8521f0b95
commit
9bc516bada
1 changed files with 46 additions and 0 deletions
|
@ -8041,3 +8041,49 @@ (define-public r-biodist
|
||||||
"This package provides a collection of software tools for calculating
|
"This package provides a collection of software tools for calculating
|
||||||
distance measures.")
|
distance measures.")
|
||||||
(license license:artistic2.0)))
|
(license license:artistic2.0)))
|
||||||
|
|
||||||
|
(define-public r-pcatools
|
||||||
|
(package
|
||||||
|
(name "r-pcatools")
|
||||||
|
(version "2.0.0")
|
||||||
|
(source
|
||||||
|
(origin
|
||||||
|
(method url-fetch)
|
||||||
|
(uri (bioconductor-uri "PCAtools" version))
|
||||||
|
(sha256
|
||||||
|
(base32
|
||||||
|
"0mnwqrhm1hmhzwrpidf6z207w1ycpm572snvpp5swlg6hnxq6bnc"))))
|
||||||
|
(properties `((upstream-name . "PCAtools")))
|
||||||
|
(build-system r-build-system)
|
||||||
|
(propagated-inputs
|
||||||
|
`(("r-beachmat" ,r-beachmat)
|
||||||
|
("r-bh" ,r-bh)
|
||||||
|
("r-biocparallel" ,r-biocparallel)
|
||||||
|
("r-biocsingular" ,r-biocsingular)
|
||||||
|
("r-cowplot" ,r-cowplot)
|
||||||
|
("r-delayedarray" ,r-delayedarray)
|
||||||
|
("r-delayedmatrixstats" ,r-delayedmatrixstats)
|
||||||
|
("r-dqrng" ,r-dqrng)
|
||||||
|
("r-ggplot2" ,r-ggplot2)
|
||||||
|
("r-ggrepel" ,r-ggrepel)
|
||||||
|
("r-lattice" ,r-lattice)
|
||||||
|
("r-matrix" ,r-matrix)
|
||||||
|
("r-rcpp" ,r-rcpp)
|
||||||
|
("r-reshape2" ,r-reshape2)))
|
||||||
|
(native-inputs `(("r-knitr" ,r-knitr)))
|
||||||
|
(home-page "https://github.com/kevinblighe/PCAtools")
|
||||||
|
(synopsis "PCAtools: everything Principal Components Analysis")
|
||||||
|
(description
|
||||||
|
"@dfn{Principal Component Analysis} (PCA) extracts the fundamental
|
||||||
|
structure of the data without the need to build any model to represent it.
|
||||||
|
This \"summary\" of the data is arrived at through a process of reduction that
|
||||||
|
can transform the large number of variables into a lesser number that are
|
||||||
|
uncorrelated (i.e. the 'principal components'), while at the same time being
|
||||||
|
capable of easy interpretation on the original data. PCAtools provides
|
||||||
|
functions for data exploration via PCA, and allows the user to generate
|
||||||
|
publication-ready figures. PCA is performed via @code{BiocSingular}; users
|
||||||
|
can also identify an optimal number of principal components via different
|
||||||
|
metrics, such as the elbow method and Horn's parallel analysis, which has
|
||||||
|
relevance for data reduction in single-cell RNA-seq (scRNA-seq) and high
|
||||||
|
dimensional mass cytometry data.")
|
||||||
|
(license license:gpl3)))
|
||||||
|
|
Loading…
Reference in a new issue