mirror of
https://git.in.rschanz.org/ryan77627/guix.git
synced 2024-11-17 12:17:10 -05:00
gnu: r-abn: Update to 2.5-0.
* gnu/packages/cran.scm (r-abn): Move from here... * gnu/packages/bioconductor.scm (r-abn): ...to here; update to 2.5-0. [propagated-inputs]: Add r-rgraphviz.
This commit is contained in:
parent
b9fb13b284
commit
aa9a94bba9
2 changed files with 38 additions and 35 deletions
|
@ -10996,6 +10996,44 @@ (define-public r-ldheatmap
|
|||
on the plot.")
|
||||
(license license:gpl3)))
|
||||
|
||||
;; This is a CRAN package, but it depends on r-rgraphviz, which is a
|
||||
;; Bioconductor package.
|
||||
(define-public r-abn
|
||||
(package
|
||||
(name "r-abn")
|
||||
(version "2.5-0")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (cran-uri "abn" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1fqmhw0mhdl6az1gpg0byvx5snhz1pl3fqikhyfjcjrc9xbsq8yw"))))
|
||||
(build-system r-build-system)
|
||||
(inputs
|
||||
`(("gsl" ,gsl)))
|
||||
(propagated-inputs
|
||||
`(("r-lme4" ,r-lme4)
|
||||
("r-nnet" ,r-nnet)
|
||||
("r-rcpp" ,r-rcpp)
|
||||
("r-rcpparmadillo" ,r-rcpparmadillo)
|
||||
("r-rgraphviz" ,r-rgraphviz)
|
||||
("r-rjags" ,r-rjags)))
|
||||
(home-page "https://r-bayesian-networks.org/")
|
||||
(synopsis "Modelling multivariate data with additive bayesian networks")
|
||||
(description
|
||||
"Bayesian network analysis is a form of probabilistic graphical models
|
||||
which derives from empirical data a directed acyclic graph, DAG, describing
|
||||
the dependency structure between random variables. An additive Bayesian
|
||||
network model consists of a form of a DAG where each node comprises a
|
||||
@dfn{generalized linear model} (GLM). Additive Bayesian network models are
|
||||
equivalent to Bayesian multivariate regression using graphical modelling, they
|
||||
generalises the usual multivariable regression, GLM, to multiple dependent
|
||||
variables. This package provides routines to help determine optimal Bayesian
|
||||
network models for a given data set, where these models are used to identify
|
||||
statistical dependencies in messy, complex data.")
|
||||
(license license:gpl2+)))
|
||||
|
||||
(define-public r-pathview
|
||||
(package
|
||||
(name "r-pathview")
|
||||
|
|
|
@ -8037,41 +8037,6 @@ (define-public r-entropy
|
|||
there are functions for discretizing continuous random variables.")
|
||||
(license license:gpl3+)))
|
||||
|
||||
(define-public r-abn
|
||||
(package
|
||||
(name "r-abn")
|
||||
(version "2.3-0")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (cran-uri "abn" version))
|
||||
(sha256
|
||||
(base32
|
||||
"17vdrqm6qp5aijg00ah2imj3pqr6cl5r43hgg8dijbrbhznarci6"))))
|
||||
(build-system r-build-system)
|
||||
(inputs
|
||||
`(("gsl" ,gsl)))
|
||||
(propagated-inputs
|
||||
`(("r-lme4" ,r-lme4)
|
||||
("r-nnet" ,r-nnet)
|
||||
("r-rcpp" ,r-rcpp)
|
||||
("r-rcpparmadillo" ,r-rcpparmadillo)
|
||||
("r-rjags" ,r-rjags)))
|
||||
(home-page "https://r-bayesian-networks.org/")
|
||||
(synopsis "Modelling multivariate data with additive bayesian networks")
|
||||
(description
|
||||
"Bayesian network analysis is a form of probabilistic graphical models
|
||||
which derives from empirical data a directed acyclic graph, DAG, describing
|
||||
the dependency structure between random variables. An additive Bayesian
|
||||
network model consists of a form of a DAG where each node comprises a
|
||||
@dfn{generalized linear model} (GLM). Additive Bayesian network models are
|
||||
equivalent to Bayesian multivariate regression using graphical modelling, they
|
||||
generalises the usual multivariable regression, GLM, to multiple dependent
|
||||
variables. This package provides routines to help determine optimal Bayesian
|
||||
network models for a given data set, where these models are used to identify
|
||||
statistical dependencies in messy, complex data.")
|
||||
(license license:gpl2+)))
|
||||
|
||||
(define-public r-acd
|
||||
(package
|
||||
(name "r-acd")
|
||||
|
|
Loading…
Reference in a new issue