guix/gnu/packages/patches/coq-autosubst-1.8-remove-deprecated-files.patch
Jean-Pierre De Jesus DIAZ bf1e063be3
gnu: coq-autosubst: Fix Coq 8.19 compatibility.
* gnu/packages/patches/coq-autosubst-1.8-remove-deprecated-files.patch:
New patch.
* gnu/local.mk (dist_patch_DATA): Register patch.
* gnu/packages/coq.scm (coq-autosubst)<source>: Use Coq 8.19
compatibility patch.

Change-Id: Ib705c92b5605c6b679224f471ff12c018842c006
Signed-off-by: Andreas Enge <andreas@enge.fr>
2024-06-23 11:48:40 +02:00

43 lines
1.6 KiB
Diff

This patch compatibility problems with Coq 8.19.
It was taken from the master branch of coq-autosubst as there is only
this change since version 1.8 of autosubst and they haven't released a
newer version yet.
To recreate this patch:
wget https://github.com/coq-community/autosubst/commit/97eea491813b691c6187d53d92ae6020874a82a3.patch \
-O coq-autosubst-1.8-remove-deprecated-files.patch
From 97eea491813b691c6187d53d92ae6020874a82a3 Mon Sep 17 00:00:00 2001
From: Pierre Rousselin <rousselin@math.univ-paris13.fr>
Date: Sun, 15 Oct 2023 14:34:31 +0200
Subject: [PATCH] Remove deprecated files in Coq.Arith
This is necessary for Coq/Coq:#18164
---
theories/Autosubst_Basics.v | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/theories/Autosubst_Basics.v b/theories/Autosubst_Basics.v
index 477c87c..1940c3b 100644
--- a/theories/Autosubst_Basics.v
+++ b/theories/Autosubst_Basics.v
@@ -5,7 +5,7 @@
*)
Require Import Coq.Program.Tactics.
-Require Import Coq.Arith.Plus List FunctionalExtensionality.
+Require Import Coq.Arith.PeanoNat List FunctionalExtensionality.
(** Annotate "a" with additional information. *)
Definition annot {A B} (a : A) (b : B) : A := a.
@@ -240,7 +240,7 @@ Lemma plusSn n m : S n + m = S (n + m). reflexivity. Qed.
Lemma plusnS n m : n + S m = S (n + m). symmetry. apply plus_n_Sm. Qed.
Lemma plusOn n : O + n = n. reflexivity. Qed.
Lemma plusnO n : n + O = n. symmetry. apply plus_n_O. Qed.
-Lemma plusA n m k : n + (m + k) = (n + m) + k. apply plus_assoc. Qed.
+Lemma plusA n m k : n + (m + k) = (n + m) + k. apply Nat.add_assoc. Qed.
Lemma scons_eta f n : f n .: (+S n) >>> f = (+n) >>> f.
Proof.