gnu: Add python-scikit-rebate.

* gnu/packages/machine-learning.scm (python-scikit-rebate): New variable.
This commit is contained in:
Roel Janssen 2020-04-27 13:54:43 +02:00
parent ccf70a80a1
commit 639ae3f20b
No known key found for this signature in database
GPG key ID: CBD0CD5138C19AFC

View file

@ -867,6 +867,35 @@ (define-public python2-scikit-learn
(base32
"08zbzi8yx5wdlxfx9jap61vg1malc9ajf576w7a0liv6jvvrxlpj")))))))
(define-public python-scikit-rebate
(package
(name "python-scikit-rebate")
(version "0.6")
(source (origin
(method url-fetch)
(uri (pypi-uri "skrebate" version))
(sha256
(base32
"1h7qs9gjxpzqabzhb8rmpv3jpmi5iq41kqdibg48299h94iikiw7"))))
(build-system python-build-system)
;; Pandas is only needed to run the tests.
(native-inputs
`(("python-pandas" ,python-pandas)))
(propagated-inputs
`(("python-numpy" ,python-numpy)
("python-scipy" ,python-scipy)
("python-scikit-learn" ,python-scikit-learn)
("python-joblib" ,python-joblib)))
(home-page "https://epistasislab.github.io/scikit-rebate/")
(synopsis "Relief-based feature selection algorithms for Python")
(description "Scikit-rebate is a scikit-learn-compatible Python
implementation of ReBATE, a suite of Relief-based feature selection algorithms
for Machine Learning. These algorithms excel at identifying features that are
predictive of the outcome in supervised learning problems, and are especially
good at identifying feature interactions that are normally overlooked by
standard feature selection algorithms.")
(license license:expat)))
(define-public python-autograd
(let* ((commit "442205dfefe407beffb33550846434baa90c4de7")
(revision "0")